Close Wed: HW_5A, 5B (7.1, 7.2) Close Fri: HW_5C (7.3)
Office Hours: 1:30-3:30 in THO 335 See posting of several more integration by parts examples (with solutions).

7.1 Integration by Parts (continued)

Summary: $\int u d v=u v-\int v d u$

1. Pick $u=$??. The rest is $d v$.
2. Differentiate to get du Integrate to get v.

Here are all the most common examples:
a) Products: $\quad x e^{x}, x^{2} \cos (3 x), x \sin (5 x)$
b) Logarithms: $\ln (x), x^{10} \ln (x), \ldots$
c) Inv. Trig: $\sin ^{-1}(x), \tan ^{-1}(x), \ldots$
d) Products: $e^{x} \sin (x), e^{x} \cos (x)$

Entry Task: Evaluate

$$
\int_{0}^{1} \sin ^{-1}(x) d x=\int_{0}^{1} \arcsin (x) d x
$$

Example: (Never ending integration by parts and how to end it):
$\int e^{x} \cos (x) d x$

7.2 Trigonometric Integral Methods

Goal: Build up rules for integrating combinations of trig functions.

Basic motivating examples:
All of these could be done with substitution: What is u ?

```
\int\mp@subsup{\operatorname{sin}}{}{4}(x)\operatorname{cos}(x)dx
\intin}(x)\mp@subsup{\operatorname{cos}}{}{3}(x)d
tan
\int sec}\mp@subsup{}{}{6}(x)\operatorname{sec}(x)\operatorname{tan}(x)d
```

Idea: Use trig identities to turn a problem into a substitution problem like those above.

Tools

Essential Trig Identities:

$$
\begin{array}{ll}
\text { sols } & \begin{array}{l}
\text { Add these to your table of integrals you } \\
\text { know (an updated table is already on the } \\
\text { website): }
\end{array} \\
\begin{array}{cl}
\tan (x)=\frac{\sin (x)}{\cos (x)}, \cot (x)=\frac{\cos (x)}{\sin (x)}, & \\
\sec (x)=\frac{1}{\cos (x)}, \csc (x)=\frac{1}{\sin (x)} . & \int \tan (x) d x=\ln |\sec (x)|+C \\
\sin ^{2}(x)+\cos ^{2}(x)=1 \\
\tan ^{2}(x)+1=\sec ^{2}(x) & \int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C \\
\cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x)) & \int \sec ^{3}(x) d x= \\
\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x)) & \frac{1}{2} \sec (x) \tan (x)+\frac{1}{2} \ln |\sec (x)+\tan (x)|+C \\
\sin (x) \cos (x)=\frac{1}{2} \sin (2 x) &
\end{array}
\end{array}
$$

See my online posting (or Appendix D of your book) for a more general discussion of trig identities.

